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Abstract Detection of small ships from an optical
remote sensing image plays an essential role in military
and civilian fields. However, it becomes more difficult if
noise dominates. To solve this issue, a method based on a
low-level vision model is proposed in this paper. A global
channel, high-frequency channel, and low-frequency
channel are introduced before applying discrete wavelet
transform, and the improved extended contrast sensitivity
function is constructed by self-adaptive center-surround
contrast energy and a proposed function. The saliency
image is achieved by the three-channel process after
inverse discrete wavelet transform, whose coefficients are
weighted by the improved extended contrast sensitivity
function. Experimental results show that the proposed
method outperforms all competing methods with higher
precision, higher recall, and higher F-score, which are
100.00%, 90.59%, and 97.96%, respectively. Furthermore,
our method is robust against noise and has great potential
for providing more accurate target detection in engineering
applications.
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1 Introduction

A ship is the main target for sea surface monitoring and
wartime combating. In remote sensing image processing,
ship detection and identification technology has been
intensively studied in recent years. Ship target detection
methods for optical remote sensing can be classified into
the following four categories [1–5]: methods based on the
gray statistic feature, image edge feature, fractal model and
fuzzy theory, and visual sensitivity model. Small ship

targets are susceptible to noise and shadow of the sea, so
the methods based on the gray statistical feature, edge
feature information, and fractal model may lose their
functions [5]. Therefore, the method based on the visual
sensitivity model is selected.
At present, saliency detection based on the visual

sensitivity model is widely used. Goferman et al. [6]
realized a saliency model based on the context aware.
Erdem [7] proposed a viewpoint saliency detection method
based on the region covariance. Pandivalavan and
Karuppiah [8] proposed a region-based computational
visual attention model for saliency detection. Kapoor et al.
[9] introduced a set of fuzzy features to mark out the salient
region in an image. Zhang et al. [10] proposed a novel
graph-based optimization framework for salient object
detection. However, all the algorithms above are focused
on the detection of noiseless color images with large
targets and abundant texture information. The influence of
panchromatic images, small targets, and noise is not
considered. Therefore, existing algorithms have limitations
for detecting small targets from noisy panchromatic
images. From the above perspective, we modify the
nonparametric low-level vision model first proposed by
Murray et al. [11] and Song et al. [5] and optimize the
robustness of small-ship detection through the design of an
extended contrast sensitivity function (ECSF) for different
channels.

2 Proposed detection method

This paper first describes the algorithm design using the
human visual contrast and spatial relations, based on the
following three assumptions [12]:
1) The induction effect operating on a particular spatial

frequency stimulus in the intensity channel is determined
by the characteristics of the surround stimulus with the
same spatial frequency.
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2) When the central stimulus has the same orientation as
the surround stimulus, assimilation in the intensity channel
is stronger and vice versa.
3) When the contrast energy of the surround features

increases, assimilation in the intensity channel increases,
the contrast effect decreases, and vice versa.
Based on the assumptions above, we believe that the

spatial frequency of the environment and the central-
surrounding contrast stimulus are the two main factors that
determine visual perception changes. This paper focuses
on how to construct the extended contrast sensitive
function of different spatial frequencies. The final visual
significance information is obtained by designing contrast
sensitivity weighting at different scale spaces. The flow
chart of the proposed method is shown in Fig. 1.

2.1 Channel design

Impulse noise, Gaussian noise, and Poisson noise are the
main factors affecting detection accuracy. Considering that
different noises have different frequency characteristics,
we convert the image information I to the global channel
Ig, high-frequency channel , Ih and low-frequency channel
Il in order to realize different frequency noise interference
separateness. The global channel is used for global
saliency detection, high-frequency channel is used to
detect the saliency of impulse interfering information, and
low-frequency channel is used to remove the interference
of Gaussian and Poisson noises and ensure the number of
absolute targets. The global channel Ig is normalized by the
value of the gray scale data:

Iiðx,yÞ ¼ Iðx,yÞ=2N , (1)

where I is the original image information and N is the
number of quantization bits.
Considering that impulse noise is isolated from ship

targets, Gaussian noise and Poisson noise are mixed in the
background, we design a filter Hðx,yÞ to achieve the

effective extraction of high-frequency and low-frequency
information. Let Sxy represent the rectangular subimage
window coordinate group at the center ðx,yÞ with a size of
m� n; Hðx,yÞ is

H x,y,δð Þ ¼ 1 – δ
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where δ is a balance factor which affects the proportion of
the frequency component. The outputs of the critical
channels are

Ihðx,yÞ ¼ Hðx,y,0ÞIðx,yÞ=2N ,
Ilðx,yÞ ¼ Hðx,y,1ÞIðx,yÞ=2N :

(
(3)

In this case, the Ih channel mainly contains the
information to be ignored after the detection, and the Il
channel mainly contains the most significant low-
frequency information for the final calibration.
After the channel conversion, the three channels are

transformed by wavelet to obtain the spatial pyramid of
multiple scales, which contains wavelet planes oriented
either horizontally (h), vertically (v), or diagonally (d), and
the wavelet transform parameter ws,o,p contains the local
contrast information of the global, high-frequency, and
low-frequency channels.

2.2 Scale adaptive center-surround contrast energy

Contrast is an important feature in an image vision model
and is the main factor affecting the human visual attention.
When we need to analyze complex scenes, the vision

Fig. 1 Flow chart of the proposed method. WT: wavelet transform; WT-1: inverse wavelet transform
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system will judge the saliency target according to the
contrast stimulus [5]. In this paper, the center-surround
contrast energy is used to characterize the saliency region.
The difference between the noise-edge information and the
local information at different scales is considered in order
to realize effective and ineffective information separation.
The wavelet transform coefficient matrix ws,o,p is con-
voluted by a binary filter hwith a directional characteristic
and the contrast energy coefficient a2x,y, which is con-
structed as

a2x,y ¼ hw2
s,o,p: (4)

Compared with ordinary images, sea surface images
containing small ship targets lose texture information. At a
low scale, the difference of the center-surround contrast
energy is not significant, and aliasing between noise-edge
information and background information is considerable,
which directly reduces the significant difference between
the target and nontarget points in the subsequent saliency
map. Therefore, we improve the center-surround contrast
energy from the traditional model (Eq. (5)) to a new model
(Eq. (6)):

rx,y ¼ ðacenx,y Þ2=ðasurx,y Þ2, (5)

rx,y,s ¼ ðacenx,y,sÞ2=½ðasurx,y,sÞ2 þ ls�, (6)

The factor ls is introduced into the center-surround
contrast energy, and it varies with the magnitude of the
edge region energy calculated in its scale direction:

ls ¼ g� ord½maxðasurx,y,sÞ2�, (7)

where g is the amplification factor (g ¼ 10 in this paper)
and ord½ � represents the order of magnitude. The change
curve of rx,y,s after introducing the scale factor ls is shown
in Fig. 2.
It can be seen in Fig. 2 that the introduction of ls in rx,y,s

suppresses the overall contrast of the global image. The
ratio of the center-surround contrast energy values at each
position does not change, but the value becomes narrow
overall. At this time, the noise-edge position with large

rx,y,s values is still significant, and other values of relative
positions become smaller and are suppressed. The rx,y,s
images are shown in Fig. 3.

2.3 Improved ECSF

The ECSFs have been developed by Otazu et al. [12] in
order to quantitatively analyze the center-surround contrast
energy:

ECSF z,sð Þ ¼ r2

1þ r2
� g sð Þ þ k sð Þ, (8)

where gðsÞ is the weight function and kðsÞ is an additional
function ensuring a nonzero lower bound [12]. The main
drawback of the low-level vision model in dealing with
images in this paper is that noise, as a stimulus with a
different frequency, has a “target-guided” form for visual
perception, and the intensity of the target information is
often weaker than noise. Owing to the loss of detail
information of small ship targets in a sea image and the
relationship between the noise type and the frequency, we
adopt the method of neglecting the target edge and
construct a new ECSF based on the Barten model and
Daly model of the human eye transfer function. We
designed gðsÞ:
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where s represents the spatial scale, f represents the spatial
frequency, and s ¼ log2ð1=f Þ. i2 is the size of an input
image. ε is a factor of imaging luminance, which decreases
with brightness enhancement. �1, �2 define the spread of
the spatial sensitivity of gðsÞ, sg0 defines the peak spatial

scale sensitivity of gðsÞ. α, β are the weighing factors: α
mainly affects the low-frequency component, which is
mainly caused by Gaussian noise and Poisson noise, and β
mainly affects the high-frequency component, which is
mainly caused by impulse noise.

Fig. 2 Curve of center-surround contrast energy
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�3 defines the spread of the spatial sensitivity of kðsÞ, sk0
defines the peak spatial scale sensitivity of kðsÞ, and kðsÞ is

designed as

k sð Þ ¼ f½3:23ðf 2%i2Þ – 0:3�5 þ 1g – 0:2
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8><
>: (10)

The special point of our ECSF is in considering the noise
interference and luminance simultaneously with complex
weight function and factors. When the center-surrounding
energy measurement parameter is weighted by gðsÞ, the
response of different frequency information stretches
effectively. The proposed ECSF model is shown in Fig. 4.
The wavelet coefficient matrix is modulated by the value

of the ECSF, and the saliency information of each channel
is obtained by performing the inverse wavelet transform.
Then the final saliency map is achieved (g represents the
global channel, h represents the high-frequency channel,
and l represents the low-frequency channel; t equals to 0.1
in this paper):

Sfinalðx,yÞ ¼ diff ½WT – 1ðECSFðIgÞ � wgÞ,

WT – 1ðECSFðIhÞ � whÞ�

=½WT – 1ðECSFðIlÞ � wlÞ�t: (11)

At this moment, the differential result of the global
information and the high-frequency information will be
calibrated by the low-frequency channel information in
order to improve the significance of the absolute targets
and exclude the impact of low-frequency noise.

3 Experiments and discussion

A target that occupies 2–30 pixel positions is called a small
ship target in this paper. We test 40 panchromatic satellite
images with a size of 256 � 256 from Google Earth, 40
images with impulse noise with a mean value of 0 and a
variance of 0.002, 40 images with Gaussian noise having a

mean value of 0 and a variance of 0.002, 40 images with
Poisson noise with a mean value of 0 and a variance of
0.002, and 40 images with three multiple noises above. Six
methods are used for comparison with the proposed
method. The results are shown in Fig. 5. The comparison
algorithms are context aware (CA) [6], covariance (COV)
[7], spectral residual (SR) [13], spatially weighted
dissimilarity (SWD) [14], saliency estimation using low-
level model (SIM) [11], minus contrast sensitivity (MCS)
[5], and unsupervised surface detection (USD) [15].
The number of detection targets is obtained by

binarization and corrosion expansion operations. The
criteria for evaluating the merits of the algorithms are
defined as precision, recall, and F-score:

Precision ¼
TP

TP þ FP
� 100%, (12)

Recall ¼
TP

TP þ FN
� 100%, (13)

Fscore ¼ 1þ β2
� �� Precision � Recall

β2 � Precision þ Recall
, (14)

where TP represents the right number, FP represents the
false alarm number, FN represents the leak number, and β
is used to balance the precision and the recall (β ¼ 0:5 in
this paper). The performance comparison of different
methods is shown in Figs. 6 and 7.
For normal images, the precision, recall, and F-score of

our method is 100%, 90.59%, and 97.96%, respectively,
which is 7.15% higher, 4.93% lower, and 7.48% higher

Fig. 3 Image of the center-surround contrast energy. (a) Before
change; (b) after change Fig. 4 Our ECSF mode
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Fig. 5 Contrast of saliency maps using different methods for noise-free image and noise image, from left to right: original, CA, COV,
SR, SWD, SIM, MCS, USD, OURS. (a) Noise-free image; (b) impulse; (c) Gaussian; (d) Poisson; (e) multiple (Top row: Typical image 1.
Bottom row: Typical image 2)
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than those in other algorithms. From the contrast
experiment, for normal images: the CA algorithm using
context aware saliency may detect weak texture informa-
tion as targets, giving rise to higher false alarm. The COV
algorithm using the mean descriptor and a covariance
descriptor to describe seven dimensional feature vectors of
the image region cannot be used effectively when the
texture information is small, which results in higher
omission ratio. The SR method analyzing and removing
the general information in the logarithmic spectrum leads
to the neglect of secondary targets and a decrease in the
number of correct tests. In the bright sea area, the SWD
algorithm needs to calculate the space distance of image

blocks and the center deviation; the obtained weighting
proportion is larger, which leads to an increase in the
background value. The SIM algorithm extracting excess
weak texture and edge information during scale decom-
position may obscure targets and background information;
moreover, the ECSF does not significantly focus on the
target area and brings false alarm. The MCS algorithm
using channel and minus extend contrast sensitivity
function (MECSF) design cannot stretch the contrast all
the time and cannot get rid of the influence caused by low-
frequency noise, which results in false alarms. The USD
algorithm that smoothes the amplitude spectrum by using
different Gaussian kernel functions after the discrete
Fourier transform causes energy of some targets to be
weakened during the processing, resulting in the imbalance
of false alarms and omissions after subsequent fusion
correction.
When applied to images of impulse noise, Gaussian

noise, and Poisson noise, the precision, recall, and F-score
of our method are (100%, 90.59%, 97.96%) (impulse),
(94.52%, 81.18%, 91.51%) (Gaussian), and (100%,
83.53%, 96.21%) (Poisson), respectively, and the highest
precision, recall, and F-score of the other methods are
(87.34%, 90.59%, 86.03%) (impulse), (81.36%, 80.95%,
75.00%) (Gaussian), and (90.91%, 94.12%, 89.29%)
(Poisson), respectively. A further application to images
of multiple noises shows that the precision, recall, and F-
score of our method are 94.44%, 80%, and 91.15%, and

Fig. 6 Performance of different methods for noise-free images

Fig. 7 Performances of different methods for noise image. (a) Impulse; (b) Gaussian; (c) Poisson; (d) multiple
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the highest precision, recall, and F-score of the other
methods are 59.26%, 88.24%, and 61.70%, respectively.
For noisy images, the influence of various noises from high
to low are impulse noise, Gaussian noise, and Poisson
noise, and almost all the comparison algorithms are not

able to resist impulse noise and Gaussian noise. For images
of multiple noises, the number of correct detections
decreases dramatically, and the false alarm and omission
ratios increase significantly.
In our algorithm, the influence of different types of noise

on sea surface target detection is fully considered. By
means of the scale adaptive central contrast energy and the
extended ECSF design, significant separation of signal and
noise at different frequencies is realized. At the same time,
the three-channel design effectively realizes filtering of
high-frequency noise and “re-calibration” of a signal
target. Analysis shows that there are two main reasons
for the omission and false alarms in our algorithm: 1)
When the scale of a single target is too small, the target is
neglected in noises. 2) A connected region is formed when
targets are too close.
To verify the robustness of the proposed algorithm

against interference noise, an additive noise test is
designed. Considering that changes in the content of
Gaussian noise and Poisson noise can have negligible

Fig. 8 Noise images (Top row) and saliency maps (Bottom row) of (a) Test 1 and (b) Test 2. Noise variance of both of them from left to
right: 0, 0.005, 0.010, 0.015, 0.020

Fig. 9 Detection results of Test 1 and Test 2
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impact on the detection, we design the following two tests:
Test 1. Add impulse noise with a mean value of 0 and a
variance of 0, 0.005, 0.010, 0.015, and 0.020 on normal
images. Test 2. Add Gaussian noise with a mean value of 0
and a variance of 0.005 and Poisson noise on normal
images; then add impulse noise with a mean value of 0 and
a variance of 0, 0.005, 0.010, 0.015, and 0.020 on noisy
images above, respectively. The detection results are
shown in Figs. 8 and 9.
It can be seen from Test 1 that when the variance of

impulse noise is less than 0.020, the precision, recall, and
F-score are higher than 80%. False alarms are mainly
caused by the impulse noise, and omission mainly results
from the regional connectivity at this time. In Test 2, the
steps of adding the Gaussian noise and the Poisson noise
have a direct impact on the detection effect. The noise
masks some small targets, resulting in a similar noise and
target scale, and some images cannot be recognized even
by the human eye; therefore, the false alarm and omission
ratios increase directly. The precision of the other
comparison algorithms are all below 40% because of the
high false alarm rate with this data set. When the targets,
which can be recognized by the human eye in Test 2, are
considered as the actual target numbers and the target

shrink threshold is increased, the detection results are
shown in Table 1.
Real remote sensing image do not have much noise. To

verify the effectiveness of the proposed algorithm, an
actual remote sensing camera imaging and testing experi-
ment was designed. In the experiment, a self-developed
low-light camera (CMOS sensor: GSENSE400) was used,
sea surface scenes were generated by an image simulator,
and the local areas (256� 256) of images were detected by
the proposed algorithm. The experiment was conducted
under two scenarios: the first scenario was natural light
environment (illumination: 4000 lx, exposure time: 20 ms),
and the second scenario was low-light environment
(illumination: 0.05 lx, exposure time: 1000 ms). The

Table 1 Detection results of Test 2 (contrast human eyes)

variance precision recall F-score

0 95.59% 86.67% 93.66%

0.005 96.83% 89.71% 95.32%

0.010 90.91% 87.72% 90.25%

0.015 91.38% 89.83% 91.07%

0.020 86.44% 89.47% 87.03%

Fig. 10 Detection results of imaging test of (a) first group and (b) second group. Top row: original images; bottom row: saliency maps
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detection results are shown in Fig. 10. The performance of
the proposed algorithm is good for both sparse targets and
target groups.
For time consumption experiment, Intel (R) Xeon (R)

CPU E5-1620 v2 @ 3.70GHz computer and MATLAB
R2015a software are used. An average time consumption
of our method is 1.4008 s, less than that of CA (43.0158 s),
COV (26.2670 s), SIM (1.6437 s), and USD (1.6453 s) and
more than that of SR (0.0994 s), SWD (0.2462 s), and
MCS (1.3936 s). Time consumption mainly occurs in the
multichannel conversion between the airspace and the
transform domain.

4 Conclusions

This paper presents a new approach to detect small ships
from an optical remote sensing image based on the low-
level vision model. The channel separateness, scale
adaptive center-surround contrast energy, and improved
ECSF are taken as the key in the formulation of our
improved model to detect small ships. The performance of
the proposed model is validated and compared. The results
of the comparison show that the proposed method has
higher precision, recall, and F-score with robust anti-noise
ability. However, the time consumption is large. Therefore,
we plan to research an optimization method in our future
work.
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